EIGHTH EDITION

COGNITIVE PSYCHOLOGY A STUDENT'S HANDBOOK

MICHAEL W. EYSENCK & MARK T. KEANE

A Psychology Press Book

"This edition of Eysenck and Keane has further enhanced the status of *Cognitive Psychology: A Student's Handbook*, as a high benchmark that other textbooks on this topic fail to achieve. It is informative and innovative, without losing any of its hallmark coverage and readability."

Professor Robert Logie, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, United Kingdom

"The best student's handbook on cognitive psychology – an indispensable volume brought up-to-date in this latest edition. It explains everything from low-level vision to high-level consciousness, and it can serve as an introductory text."

Professor Philip Johnson-Laird, Stuart Professor of Psychology, Emeritus, Princeton University, United States

"I first read Eysenck and Keane's *Cognitive Psychology: A Student's Handbook* in its third edition, during my own undergraduate studies. Over the course of its successive editions since then, the content – like the field of cognition itself – has evolved and grown to encompass current trends, novel approaches and supporting learning resources. It remains, in my opinion, the gold standard for cognitive psychology textbooks."

Dr Richard Roche, Senior Lecturer, Department of Psychology, Maynooth University, Ireland

"Eysenck and Keane have once again done an excellent job, not only in terms of keeping the textbook up-to-date with the latest studies, issues and debates; but also by making the content even more accessible and clear without compromising accuracy or underestimating the reader's intelligence. After all these years, this book remains an essential tool for students of cognitive psychology, covering the topic in the appropriate breadth and depth."

Dr Gerasimos Markopoulos, Senior Lecturer, School of Science, Bath Spa University, United Kingdom

"Eysenck and Keane's popular textbook offers comprehensive coverage of what psychology students need to know about human cognition. The textbook introduces the core topics of cognitive psychology that serve as the fundamental building blocks to our understanding of human behaviour. The authors integrate contemporary developments in the field and provide an accessible entry to neighboring disciplines such as cognitive neuroscience and neuropsychology."

Dr Motonori Yamaguchi, Senior Lecturer, Department of Psychology, University of Essex, United Kingdom "The eighth edition of *Cognitive Psychology* by Eysenck and Keane provides possibly the most comprehensive coverage of cognition currently available. The text is clear and easy to read with clear links to theory across the chapters. A real highlight is the creative use of up-to-date real-world examples throughout the book."

Associate Professor Rhonda Shaw, Head of the School of Psychology, Charles Sturt University, Australia

"Unmatched in breadth and scope, it is the authoritative textbook on cognitive psychology. It outlines the history and major developments within the field, while discussing state-of-the-art experimental research in depth. The integration of online resources keeps the material fresh and engaging."

Associate Professor Søren Risløv Staugaard, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark

"Eysenck and Keane's *Cognitive Psychology* provides comprehensive topic coverage and up-to-date research. The writing style is concise and easy to follow, which makes the book suitable for both undergraduate and graduate students. The authors use real-life examples that are easily relatable to students, making the book very enjoyable to read."

Associate Professor Lin Agler, School of Psychology, University of Southern Mississippi Gulf Coast, United States

Cognitive Psychology

The fully updated eighth edition of *Cognitive Psychology: A Student's Handbook* provides comprehensive yet accessible coverage of all the key areas in the field ranging from visual perception and attention through to memory and language. Each chapter is complete with key definitions, practical real-life applications, chapter summaries and suggested further reading to help students develop an understanding of this fascinating but complex field.

The new edition includes:

- an increased emphasis on neuroscience
- updated references to reflect the latest research
- applied 'in the real world' case studies and examples.

Widely regarded as the leading undergraduate textbook in the field of cognitive psychology, this new edition comes complete with an enhanced accompanying companion website. The website includes a suite of learning resources including simulation experiments, multiple-choice questions, and access to Primal Pictures' interactive 3D atlas of the brain. The companion website can be accessed at: www.routledge.com/cw/eysenck.

Michael W. Eysenck is Professor Emeritus in Psychology at Royal Holloway, University of London, United Kingdom. He is also Professorial Fellow at Roehampton University, London. He is the best-selling author of several textbooks including *Fundamentals of Cognition* (2018), *Memory* (with Alan Baddeley and Michael Anderson, 2020) and *Fundamentals of Psychology* (2009).

Mark T. Keane is Chair of Computer Science at University College Dublin, Ireland.

Visit the Companion Website to access a range of interactive teaching and learning resources

Includes access to Primal Pictures' interactive 3D brain

www.routledge.com/cw/eysenck

PRIMAL PICTURES

Revolutionizing medical education with anatomical solutions to fit every need

For over 27 years, Primal Pictures has led the way in offering premier 3D digital human anatomy solutions, transforming how educators teach and students learn the complexities of human anatomy and medicine. Our pioneering scientific approach puts quality, accuracy and detail at the heart of everything we do.

Primal's experts have created the world's most medically accurate and detailed 3D reconstruction of human anatomy using real scan data from the NLM Visible Human Project®, as well as CT images and MRIs. With advanced academic research and thousands of development hours underpinning its creation, our model surpasses all other anatomical resources available.

To learn more about Primal's cutting-edge solution for better learning outcomes and increased student engagement visit www.primalpictures.com/students

COGNITIVE PSYCHOLOGY

A Student's Handbook

Eighth Edition

MICHAEL W. EYSENCK AND MARK T. KEANE

Eighth edition published 2020 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 52 Vanderbilt Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2020 Michael W. Eysenck and Mark T. Keane

The right of Michael W. Eysenck and Mark T. Keane to be identified as authors of this work has been asserted by them in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Lawrence Erlbaum Associates 1984 Seventh edition Published by Routledge 2015

Every effort has been made to contact copyright-holders. Please advise the publisher of any errors or omissions, and these will be corrected in subsequent editions.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data A catalog record has been requested for this book

ISBN: 978-1-13848-221-0 (hbk) ISBN: 978-1-13848-223-4 (pbk) ISBN: 978-1-35105-851-3 (ebk)

Typeset in Times New Roman by Servis Filmsetting Ltd, Stockport, Cheshire

Visit the companion website: www.routledge.com/cw/eysenck.

To Christine with love (M.W.E.)

> What moves science forward is argument, debate, and the testing of alternative theories . . . A science without controversy is a science without progress. (Jerry Coyne)

Contents

List of illustrations	xiv
Preface	xxix
Visual tour (how to use this book)	xxxi

1 Approaches to human cognition

Introduction 1 Cognitive psychology 3 Cognitive neuropsychology 7 Cognitive neuroscience: the brain in action 12 Computational cognitive science 26 Comparisons of major approaches 33 Is there a replication crisis? 34 Outline of this book 36 Chapter summary 37 Further reading 39

PART I Visual perception and attention

41

43

1

2 Basic processes in visual perception

Introduction 43 Vision and the brain 44 Two visual systems: perception-action model 55 Colour vision 64 Depth perception 71 Perception without awareness: subliminal perception 81 Chapter summary 90 Further reading 92

3 Object and face recognition

94

Introduction 94 Pattern recognition 95 Perceptual organisation 96 Approaches to object recognition 103 Object recognition: top-down processes 111 Face recognition 116 Visual imagery 130 Chapter summary 137 Further reading 139

4 Motion perception and action

Introduction 140 Direct perception 141 Visually guided movement 145 Visually guided action: contemporary approaches 152 Perception of human motion 157 Change blindness 163 Chapter summary 175 Further reading 176

5 Attention and performance

Introduction 178 Focused auditory attention 179 Focused visual attention 183 Disorders of visual attention 196 Visual search 200 Cross-modal effects 208 Divided attention: dual-task performance 212 "Automatic" processing 226 Chapter summary 231 Further reading 233

PART II Memory

6 Learning, memory and forgetting

Introduction 239
Short-term vs long-term memory 240
Working memory: Baddeley and Hitch 246
Working memory: individual differences and executive functions 254
Levels of processing (and beyond) 262
Learning through retrieval 265
Implicit learning 269
Forgetting from long-term memory 278
Chapter summary 293
Further reading 295

140

178

237

239

296

7 Long-term memory systems

Introduction 296 Declarative memory 300 Episodic memory 305 Semantic memory 313 Non-declarative memory 325 Beyond memory systems and declarative vs non-declarative memory 332 Chapter summary 340 Further reading 342

8 Everyday memory

344

Introduction 344 Autobiographical memory: introduction 346 Memories across the lifetime 351 Theoretical approaches to autobiographical memory 355 Eyewitness testimony 363 Enhancing eyewitness memory 372 Prospective memory 375 Theoretical perspectives on prospective memory 381 Chapter summary 389 Further reading 391

PART III Language

393

9 Speech perception and reading 403

Introduction 403 Speech (and music) perception 404 Listening to speech 408 Context effects 412 Theories of speech perception 417 Cognitive neuropsychology 429 Reading: introduction 432 Word recognition 436 Reading aloud 442 Reading: eye-movement research 453 Chapter summary 457 Further reading 460

10 Language comprehension

461

Introduction 461 Parsing: overview 462 Theoretical approaches: parsing and prediction 464 Pragmatics 478 Individual differences: working memory capacity 487 Discourse processing: inferences 490 Discourse comprehension: theoretical approaches 498 Chapter summary 510 Further reading 512

11 Language production

Introduction 514 Basic aspects of speech production 516 Speech planning 519 Speech errors 521 Theories of speech production 525 Cognitive neuropsychology: speech production 536 Speech as communication 543 Writing: the main processes 549 Spelling 558 Chapter summary 564

Further reading 566

PART IV Thinking and reasoning

12 Problem solving and expertise

Introduction 573 Problem solving: introduction 574 Gestalt approach and beyond: insight and role of experience 576 Problem-solving strategies 588 Analogical problem solving and reasoning 593 Expertise 600 Chess-playing expertise 601 Medical expertise 604 Brain plasticity 609 Deliberate practice and beyond 612 Chapter summary 619 Further reading 621

13 Judgement and decision-making

Introduction 622 Judgement research 623 Theories of judgement 633 Decision-making under risk 640 Decision-making: emotional and social factors 649 Applied and complex decision-making 654 Chapter summary 663 Further reading 665 514

573

569

622

Introduction 666 Hypothesis testing 667 Deductive reasoning 672 Theories of "deductive" reasoning 680 Brain systems in reasoning 690 Informal reasoning 694 Are humans rational? 701 Chapter summary 708 Further reading 710

PART V Broadening horizons

713

715

15 Cognition and emotion

Introduction 715 Appraisal theories 719 Emotion regulation 723 Affect and cognition: attention and memory 730 Affect and cognition: judgement and decision-making 738 Judgement and decision-making: theoretical approaches 750 Anxiety, depression and cognitive biases 753 Cognitive bias modification and beyond 761 Chapter summary 764 Further reading 766

16 Consciousness

767

Introduction 767 Functions of consciousness 768 Assessing consciousness and conscious experience 775 Global workspace and global neuronal workspace theories 783 Is consciousness unitary? 792 Chapter summary 798 Further reading 799

Glossary	801
References	824
Author index	915
Subject index	931

Illustrations

TABLES

1.1	Approaches to human cognition	3
1.2	Major techniques used to study the brain	16
1.3	Strengths and limitations of major approaches to human	
	cognition	35
11.1	Involvement of working memory components in various	
	writing processes	556
15.1	Effects of anxiety and depression on attentional bias	
	(engagement and disengagement)	757
РНО	TOS	

Chapter 1	
Max Coltheart	8
• The magnetic resonance imaging (MRI) scanner	18
Transcranial magnetic stimulation coil	21
• The IBM Watson and two human contestants	
(Ken Jennings and Brad Rutter)	27
Chapter 3	
Irving Biederman	107
Heather Sellers	118
Chapter 6	
Alan Baddeley and Graham Hitch	246
• Endel Tulving	287
Chapter 7	
Henry Molaison	297
Chapter 8	
• Jill Price	348
• World Trade Center attacks on 9/11	349
Jennifer Thompson and Ronald Cotton	364

Cha •	apter 11 Iris Murdoch	550
Cha	apter 12	
•	Monty Hall	575
•	Fernand Gobet	602
•	Magnus Carlsen	613
Cha	apter 13	
•	Pat Croskerry	625
•	Nik Wallenda	647

FIGURES

1.1	An early version of the information processing approach	4
1.2	Diagram to demonstrate top-down processing	4
1.3	Test yourself by naming the colours in each column	5
1.4	The four lobes, or divisions, of the cerebral cortex in the left	
	hemisphere	13
1.5	Brodmann brain areas on the lateral and medial surfaces	13
1.6	The brain network and cost efficiency	14
1.7	The organisation of the "rich club"	15
1.8	The spatial and temporal resolution of major techniques and	
	methods used to study brain functioning	17
1.9	Areas showing greater activation in a dead salmon when	
	presented with photographs of people than when at rest	25
1.10	The primitive mock neuroimaging device used by Ali et al.	
	(2014)	26
1.11	Architecture of a basic three-layer connectionist network	28
1.12	The main modules of the ACT-R cognitive architecture with	
	their locations within the brain	30
1.13	The basic structure of the standard model of the mind	
	involving five independent modules	31
2.1	Complex scene that requires prolonged perceptual processing	
	to understand fully	43
2.2	Route of visual signals	45
2.3	Simultaneous contrast involving lateral inhibition	46
2.4	Some distinctive features of the largest visual cortical areas	47
2.5	Connectivity within the ventral pathway on the lateral surface	
	of the macaque brain	48
2.6	(a) The single hierarchical model; (b) the parallel hierarchical	
	model; (c) the three parallel hierarchical feedforward systems	
	model	49
2.7	The percentage of cells in six different visual cortical areas	
	responding selectively to orientation, direction of motion,	
	disparity and colour	52
2.8	Visual motion inputs	53
2.9	Goodale and Milner's (1992) perception-action model showing	
	the dorsal and ventral streams	56
2.10	Lesion overlap in patients with optic ataxia	57

Illustrations

2.11	The Müller-Lyer illusion	58
2.12	The hollow-face illusion. Left: normal and hollow faces with	39
	face: right: front view of the hollow mask that appears as an	
	illusory face projecting forwards	60
2.14	Disruption of size judgements when estimated perceptually (estimation) or produced by grasping (grasping) in full or	
	restricted vision	61
2.15	Historical developments in theories linking perception and	
0.16	action	63
2.16	Schematic diagram of the early stages of neural colour	66
2 17	Photograph of a mug showing enormous variation in the	00
2.1/	properties of the reflected light across the mug's surface	67
2 18	"The Dress" made famous by its appearance on the internet	69
2.10	Observers' perceptions of "The Dress"	69
2.20	An engraving by de Vries (1604/1970) in which linear	0)
	perspective creates an effective three-dimensional effect	
	when viewed from very close but not from further away	72
2.21	Examples of texture gradients that can be perceived as surfaces	
	receding into the distance	73
2.22	Kanizsa's (1976) illusory square	73
2.23	Accuracy of size judgements as a function of object type	78
2.24	(a) A representation of the Ames room; (b) an actual Ames	
	room showing the effect achieved with two adults	79
2.25	Perceived distance. Top: stimuli presented to participants;	
	bottom: example of the stimulus display	81
2.26	The body size effect: what participants in the doll experiment	
	could see	81
2.27	Estimated contributions of conscious and subconscious	
	processing to GY's performance in exclusion and inclusion	0.4
2.20	conditions in his normal and blind fields	84
2.28	The areas of most relevance to blindsight are the lateral	96
2 20	The relationship between response bigs in reporting conscious	80
2.29	awareness and enhanced N200 on no awareness correct trials	
	compared to no-awareness incorrect trials (UC)	80
3 1	The kind of stimulus used by Navon (1977) to demonstrate	0)
5.1	the importance of global features in perception	95
32	The CAPTCHA used by Yahoo	97
3.3	The FBI's mistaken identification of the Madrid bomber	98
3.4	Examples of the Gestalt laws of perceptual organisation:	20
	(a) the law of proximity; (b) the law of similarity; (c) the law	
	of good continuation; and (d) the law of closure	99
3.5	An ambiguous drawing that can be seen as either two faces	
	or as a goblet	100
3.6	The tendency to perceive an array of empty circles as (A)	
	a rotated square or (B) a diamond	101
3.7	A task to decide which region in each stimulus is the figure	102

3.8	High and low spatial frequency versions of a place	104
3.9	Image of <i>Mona Lisa</i> revealing very low spatial frequencies	104
	(left), low spatial frequencies (centre) and high spatial	105
0 10	frequencies (right)	105
3.10	An outline of Biederman's recognition-by-components theory	107
3.11	Ambiguous figures	112
3.12	A brick wall that can be seen as something else	114
3.13	Object recognition involving two different routes: (1) a top- down route in which information proceeds rapidly to the orbitofrontal cortex: (2) a bottom-up route using the slower	
	ventral visual stream	115
3.14	Interactive-iterative framework for object recognition	115
3.15	Recognising an elephant when a key feature (its trunk) is partially hidden	116
3.16	Accuracy and speed of object recognition for birds, boats,	
	cars, chairs and faces by patient GG and healthy controls	120
3.17	Face-selective areas in the right hemisphere	121
3.18	An array of 40 faces to be matched for identity	124
3.19	The model of face recognition put forward by Bruce and	
	Young (1986)	126
3.20	Damage to regions of the inferior occipito-temporal cortex,	
	the anterior inferior temporal cortex and the anterior	
	temporal pole	127
3.21	The approximate locations of the visual buffer in BA17 and	
	BA18, of long-term memories of shapes in the inferior	
	temporal lobe, and of spatial representations in the posterior	
	parietal cortex	132
3.22	Dwell time for the four quadrants of a picture during	
	perception and imagery	133
3.23	Slezak's (1991, 1995) investigations into the effects of rotation	
	on object recognition	134
3.24	The extent to which perceived or imagined objects could be	
	classified accurately on the basis of brain activity in the early	
	visual cortex and object-selective cortex	135
3.25	Connectivity during perception and imagery involving	
	(a) bottom-up processing; and (b) top-down processing	135
4.1	The optic-flow field as a pilot comes in to land, with the focus	
	of expansion in the middle	142
4.2	Graspable and non-graspable objects having similar	
	asymmetrical features	143
4.3	The visual features of a road viewed in perspective	147
4.4	The far road "triangle" in (A) a left turn and (B) a right	
	turn	148
4.5	Errors in time-to-contact judgements for the smaller and the	
	larger object as a function of whether they were presented in	
	their standard size, the reverse size (off-size) or lacking texture	
	(no-texture)	150
4.6	The dorso-dorsal and ventro-dorsal streams showing their	
	brain locations and forms of processing	156

4.7	Point-light sequences (a) with the walker visible and (b) with the walker net visible	157
48	Human detection and discrimination efficiency for human	137
1.0	walkers presented in contour, point lights, silhouette and	
	skeleton	158
4.9	Brain areas involved in biological motion processing	159
4.10	The main brain areas associated with the mirror neuron	
	system plus their interconnections	161
4.11	The unicycling clown who cycled close to students walking	
	across a large square	164
4.12	The sequence of events in the disappearing lighter trick	166
4.13	Participants' fixation points at the time of dropping the	1.00
4 1 4	lighter	166
4.14	(a) Percentage of correct change detection as a function of	108
4.13	(a) Percentage of correct change detection as a function of	
	there was no change (b) Mean percentage correct change	
	detection as a function of the number of fixations between	
	target fixation and change of target and form of change	169
4.16	(a) Change-detection accuracy as a function of task difficulty	
	and visual eccentricity. (b) The eccentricity at which change-	
	detection accuracy was 85% correct as a function of task	
	difficulty	170
4.17	An example of inattentional blindness: a woman in a gorilla	
4.10	suit in the middle of a game of passing the ball	172
4.18	An example of inattentional blindness: the sequence of events	174
5 1	A comparison of Broadbent's theory. Traisman's theory and	1/4
5.1	Deutsch and Deutsch's theory	181
5.2	Split attention. (a) Shaded areas indicate the cued locations:	101
	the near and far locations are not cued. (b) Probability of	
	target detection at valid (left or right) and invalid (near or	
	far) locations	185
5.3	A comparison of object-based and space-based attention	187
5.4	Object-based and space-based attention. (a) Possible target	
	locations for a given cue. (b) Performance accuracy at the	100
	various target locations	188
5.5	Sample displays for three low perceptual load conditions	
	in which the task required deciding whether a target A or N	100
56	The brain areas associated with the dorsal or goal-directed	190
5.0	attention network and the ventral or stimulus-driven network	193
5.7	A theoretical approach based on several functional networks	170
	of relevance to attention: fronto-parietal; default mode;	
	cingulo-opercular; and ventral attention	195
5.8	An example of object-centred or allocentric neglect	197
5.9	Illegal and dangerous items captured by an airport security	_
	screener	201
5.10	Frequency of selection and identification errors when targets	201
	were present at triais	201

5.11	Performance speed on a detection task as a function of target	202
5 1 2	Eve fixations made by observers searching for pedestrians	203
5.12	A two pathway model of visual search	204
5.15	An example of a visual search task when considering feature	205
5.14	integration theory	208
5.15	An example of temporal ventriloquism in which the apparent time of onset of a flash is shifted towards that of a sound	
	presented at a slightly different timing from the flash	210
5.16	Wickens's four-dimensional multiple-resource model	216
5.17	Threaded cognition theory	218
5.18	Patterns of brain activation: (a) underadditive activation;	
	(b) additive activation; (c) overadditive activation	220
5.19	Effects of an audio distraction task on brain activity associated	
	with a straight driving task	221
5.20	Dual-task (auditory and visual tasks) and single-task (auditory	
	or visual task) conditions: reaction times for correct responses	
	only over eight experimental sessions	224
5.21	Response times on a decision task as a function of	
	memory-set size, display-set size and consistent vs	
	varied mapping	227
5.22	Factors that are hypothesised to influence representational	
	quality within Moors' (2016) theoretical approach	229
6.1	The multi-store model of memory as proposed by Atkinson	
	and Shiffrin (1968)	240
6.2	Short-term memory performance in conditions designed to	
	create interference (repeated condition) or minimise	
	interference (unique condition)	243
6.3	The working memory model showing the connections among	
	its four components and their relationship to long-term	
	memory	246
6.4	Phonological loop system as envisaged by Baddeley (1990)	248
6.5	Sites where direct electrical stimulation disrupted digit-span	
	performance	249
6.6	Amount of interference on a spatial task and a visual task	
	as a function of a secondary task (spatial: movement vs visual:	
	colour discrimination)	250
6.7	Screen displays for the digit 6	253
6.8	Mean reaction times quintile-by-quintile on the anti-saccade	
	task by groups high and low in working memory capacity	256
6.9	Schematic representation of the unity and diversity of three	
	executive functions	259
6.10	Activated brain regions across all executive functions in a	
	meta-analysis of 193 studies	260
6.11	Recognition memory performance as a function of processing	
	depth (shallow vs deep) for three types of stimuli: doors,	
(1 -	clocks, and menus	263
6.12	Distinctiveness. Percentage recall of the critical item	
	(e.g., kiwi) and of the preceding and following items in the	
	encoding, retrieval and control conditions	264

6.13	(a) Restudy causes strengthening of the memory trace formed	
	after initial study; (b) testing with feedback causes strengthenin,	g
	of the memory trace; and (c) the formation of a second	
	memory trace	266
6.14	(a) Final recall for restudy-only and test-restudy group	
	participants; (b) recall performance in the CMR group as a	
	function of whether the mediators were or were not	
	retrieved	267
6.15	Mean recall percentage in Session 2 on Test 1 and Test 2 as	
	function of retrieval practice or restudy practice in Session 1	268
6.16	Schematic representation of a traditional keyboard	270
6.17	Mean number of completions in inclusion and exclusion	
	conditions as a function of number of trials	273
6.18	Response times for participants showing a sudden drop	
	in reaction times or not showing such a drop	273
6 1 9	The striatum is of central importance in implicit learning	274
6.20	A model of motor sequence learning	275
6.21	Sequential motor skill learning dependencies	276
6.22	Skilled typists' performance when tested on a traditional	270
0.22	keyboard	277
6 23	Forgetting over time as indexed by reduced sayings	279
6.23	Methods of testing for proactive and retroactive interference	281
6.25	Percentage of items recalled over time for the conditions:	201
0.25	no proactive interference, remember and forget	282
6 26	Percentage of words correctly recalled across 32 articles	202
0.20	in the respond baseline and suppress conditions	286
6 27	Proportion of words recalled in high- and low-overload	200
0.27	conditions with intra-list cues strong extra-list cues and weak	
	extra-list cues	280
71	Damage to brain areas within and close to the medial	20)
/.1	temporal lobes producing ampegia	208
7 2	The standard account based on dividing long term memory	290
1.2	into two broad classes: declarative and non-declarative	200
7 2	Into two broad classes, declarative and non-declarative	500
1.5	and sist memories	205
74	(a) Locations of the hippocempus, the perirbinal cortex and	305
/.4	(a) Locations of the hippocampus, the perminan contex and	
	the paramppocampar cortex, (b) the binding-of-item-and-	207
75	(A) Left lateral (B) modial and (C) anterior views of	307
1.5	(A) Left lateral, (B), medial and (C) anterior views of	
	prefrontal areas having greater activation to familiarity-based	
	than recollection-based processes and areas showing the	200
7.0	opposite pattern	309
/.6	Sample pictures on the recognition-memory test	309
1.1	(A) Areas activated for both episodic simulation and episodic	
	memory; (B) areas more activated for episodic simulation than	212
7 0	episodic memory	312
7.8	Accuracy of (a) object categorisation and (b) speed of	
	categorisation at the superordinate, basic and subordinate	015
	levels	315
7.9	The hub-and-spoke model	319

362

7.10	Performance accuracy on tool function and tool manipulation tasks with anodal transcranial direct current stimulation to the anterior temporal lobe or to the inferior parietal lobule and in	
	a control condition	321
7.11	Categorisation performance for pictures and words by healthy controls and patients with semantic dementia	324
7.12	Percentages of priming effect and recognition-memory performance of healthy controls and patients	326
7.13	Brain regions showing repetition suppression or response enhancement in a meta-analysis	328
7.14	Mean reaction times on the serial reaction time task by Parkinson's disease patients and healthy controls	330
7.15	A processing-based memory model	334
7.16	Recognition memory for faces presented and tested in a	
	fixed or variable viewpoint	335
7.17	Brain areas whose activity during episodic learning predicted	
	decreased performance (task-positive)	337
7 18	A three-dimensional model of memory: (1) concentually	557
/.10	or percentually driven: (2) relational or item stimulus	
	representation: (3) controlled or automatic/involuntary	
	intention	330
7.19	Process-specific alliances including the left angular gyrus are involved in recollection of episodic memories and semantic	557
	processing	330
8 1	Brain regions activated by autobiographical episodic retrieval	557
0.1 0 1	and mentalising tasks including regions of overlap	347
0.2	avant recelled at various time dalays (by controls and	
	individuals with highly superior sutchis graphical memory)	210
8.3	Childhood amnesia based on data reported by Rubin and	548
	Schulkind (1997)	352
8.4	Temporal distribution of autobiographical memories across the lifespan	354
8.5	The knowledge structures within autobiographical memory,	257
86	The mean number of events participants could remember from	337
0.0	the next 5 days and those they imagined were likely over the	
	next 5 days and those they infagilied were likely over the	250
07	A model of the hidirectional relationships between neural	330
0./	A model of the oldifictional relationships between neural	
	autobiographical memories	260
00	Life structure secres (propertien pagative	300
0.0	compartmentalization, positive redundency, possitive	
	redundancy) for patients with major depressive disorder	
	netionts in romission from major depressive disorder,	
	and healthy controls	261
0 0	and iterating controls	301
0.9	recall that maintain depression and increase the risk of	

recall that	maintain	depression	and	increase	the	ris
recurrence	following	g remission				

8.10	Examples of Egyptian and UK face-matching arrays	366
0.11	memorability in the neutral condition	367
8.12	Extent of misinformation effects as a function of condition	
	for the original memory and endorsement of the	271
8 13	Every transmission presented previously	3/1
0.15	performance	371
8.14	A model of the component processes involved in prospective	
	memory	378
8.15	Mean failures to resume an interrupted task and mean	
	blank-screen interruption and secondary air traffic control	
	task interruption	379
8.16	Self-reported memory vividness, memory details and	
	confidence in memory for individuals with good and poor	
	inhibitory control before and after repeated checking	381
8.17	The dual-pathways model of prospective memory (based on the multi-process framework) for non-focal and focal tasks	
	separately	383
8.18	Example 1: top-down monitoring processes operating in	202
	isolation. Example 2: bottom-up spontaneous retrieval processe	S
	operating in isolation. Example 3: dual processes operating	
0 10	dynamically (c) System ad and (b) transient activity in the (c) left anterior	383
8.19	(a) Sustained and (b) transient activity in the (c) left anterior prefrontal cortex for non-focal and focal prospective memory	
	tasks	385
8.20	Frequency of cue-driven monitoring following the presentation	
	of semantically related or unrelated cues	386
8.21	Different ways the instruction to press Q for fruit words was	200
91	(a) Areas activated during passive music listening and passive	399
<i>.</i>	speech listening; (b) areas activated more by listening to music	
	than speech or the opposite	406
9.2	The main processes involved in speech perception and	
0.2	comprehension	407
9.3	A hierarchical approach to speech segmentation involving	410
9.4	A model of spoken-word comprehension	412
9.5	Gaze probability for critical objects over the first 1,000 ms	
	since target word onset for target neutral, competitor	
	neutral, competitor constraining and unrelated neutral	414
9.6	Conditions Mean target duration required for target recognition for words	414
9.0	and sounds presented in isolation or within a general sentence	
	context	420
9.7	The basic TRACE model, showing how activation between the	
	three levels (word, phoneme and feature) is influenced by	101
	bottom-up and top-down processing.	421

	٠	٠	٠
vv			
ᆻ			

9.8	(a) Actual eye fixations on the object corresponding to a spoken word or related to it; (b) predicted eye fixations from	
99	the TRACE model Mean reaction times for recognition of /t/ and /k/ phonemes	422
).)	in words and non-words	423
9.10	Fixation proportions to high-frequency target words during the first 1 000 ms after target onset	428
9.11	A sample display showing two nouns ("bench" and "rug")	120
9.12	and two verbs ("pray" and "run"). Processing and repetition of spoken words according to the	428
	three-route framework	430
9.13	A general framework of the processes and structures involved in reading comprehension	433
9.14	Estimated reading ability over a 30-month period with initial testing at a mean age of 66 months for English, Spanish and	
9.15	Czech children McClelland and Rumelhart's (1981) interactive activation	434
0.16	model of visual word recognition	437
9.16	priming	440
9.17	Basic architecture of the dual-route cascaded model	443
9.18	The three components of the triangle model and their	
	associated neural regions: orthography, phonology	118
9.19	Mean naming latencies for high-frequency and	770
	low-frequency words that were irregular or regular	
	and inconsistent	451
9.20	Key assumptions of the E-Z Reader model	455
10.1	Total sentence processing time as a function of sentence	471
10.2	A model of language processing involving heuristic and	4/1
10.2	algorithmic routes	473
10.3	Sentence reading times as a function of the way in which	
	comprehension was assessed: detailed questions; superficial	171
10.4	The N400 responses to a critical word in correct and	4/4
1011	incorrect sentences	476
10.5	Response times for literally false, scrambled metaphor, and	100
10.6	metaphor sentences in (a) written and (b) spoken conditions) Mean reaction times to verify metaphor-relevant and	480
10.0	metaphor-irrelevant properties	482
10.7	Mean proportion of statements rated comprehensible with a response deadline of 500 or 1600 ms: literal, forward	
10.0	metaphors, reversed metaphors and scrambled metaphors	483
10.8	Sample displays seen from the listener's perspective	485
10.9	Proportion of fixation on four objects over time	486
10.10	involving interacting passive and reader-initiated	
	processes	492

10.11	Reaction times to name colours when the word presented in colour was predictable from the preceding text compared to a	406
10.12	The construction integration model	490 502
10.12	Forgetting functions for situation, proposition and surface	502
	information over a 4-day period	503
10.14	The RI-Val model showing the effects on comprehension of	
	resonance, integration and validation over time	506
11.1	Brain areas activated during speech comprehension and	c 1 7
11.2	production	517
11.2	correlations between apprasic patients speech-production	
	abilities and then ability to detect then own speech-production	524
113	Speech-production processes for picture naming with	524
11.5	median peak activation times	532
114	Speech-production processes: the timing of activation	552
	associated with different cognitive functions	534
11.5	Language-related regions and their connections in the left	
	hemisphere	536
11.6	Semantic and syntactic errors made by: healthy controls and	
	patients with no damage to the dorsal or ventral pathway,	
	damage to the ventral pathway only, damage to the dorsal	
	pathway only and damage to both pathways	540
11.7	A sample array with six different garments coloured blue	
	or green	544
11.8	Architecture of the forward modelling approach to explaining	
11.0	audience design effects	546
11.9	Hayes' (2012) writing model: (1) control level; (2) writing	
11 10	process level; and (3) resource level	552
11.10	The frequency of three major writing processes (planning,	557
11 11	translating and revising) across the three phases of writing	222
11.11	writing skill	551
11 12	Brain areas activated during handwriting tasks	559
11.12	The cognitive architectures for (a) reading and (b) spelling	560
11.15	Brain areas in the left hemisphere associated with reading	500
	letter perception and writing	563
12.1	Explanation of the solution to the Monty Hall problem	575
12.2	Brain areas involved in (a) mathematical problem solving; (b)	
	verbal problem solving; (c) visuo-spatial problem solving; and	
	(d) areas common to all three problem types (conjunction)	577
12.3	The mutilated draughtboard problem	577
12.4	Flow chart of insight problem solving	580
12.5	(a) The nine-dot problem and (b) its solution	580
12.6	Two of the matchstick problems used by Knoblich et al. (1999)	
10 -	with cumulative solution rates	581
12.7	The multiplying billiard balls trick	582
12.8	I he two-string problem	583
12.9	Some of the materials for participants instructed to mount a	505
	candle on a vertical wall in Duncker's (1945) study	282

12.10	Mean percentages of correct solutions as a function of problem type and working memory capacity	587
12.11	The initial state of the five-disc version of the Tower of Hanoi	500
12 12	problem Towar of London took (two move and five move problems)	500
12.12	A problem resembling those used on the Rayen's Progressive	390
12.15	Matrices	594
12.14	Relational reasoning: the probabilities of successful encoding,	
	inferring, mapping and applying for lower and high	
	performers	597
12.15	Major processes involved in performance of numerous	
	cognitive tasks	598
12.16	Summary of key brain regions and their associated functions	
	in relational reasoning based on patient and neuroimaging	500
12.17	studies	599
12.17	mean strength of the first-mentioned chess move and the	
	and by tournament players	603
12 18	A theoretical framework of the main cognitive processes and	005
12.10	notential errors in medical decision-making	605
12.19	Eve fixations of a pathologist given the same biopsy	000
	whole-slide image (a) starting in year 1 and (d) ending	
	in year 4	606
12.20	Brain activation while diagnosing lesions in X-rays, naming	
	animals and naming letters	608
12.21	Brain image showing areas in the primary motor cortex with	
	differences in relative voxel size between trained children and	
	non-trained controls: (a) changes in relative voxel size over time	;
	(b) correlation between improvement in motor-test performance	; (11
12.22	and change in relative voxel size	611
12.22	differences in relative voyel size between trained children and	
	non-trained controls: (a) changes in relative voxel size over time	
	(b) correlation between improvement in a melody-rhythm test	,
	and change in relative voxel size	612
12.23	Mean chess ratings of candidates, non-candidate grandmasters	
	and all non-grandmasters as a function of number of games	
	played	616
12.24	The main factors (genetic and environmental) influencing the	
	development of expertise	617
13.1	Percentages of correct responses and various incorrect	<i></i>
10.0	responses with the false-positive and benign cyst scenarios	627
13.2	Percentage of correct predictions of the judged frequencies of	
	different causes of death based on the affect neuristic (overall dread score), affect houristic and availability	678
133	Percentage of correct inferences on four tasks	622
13.5	A hypothetical value function	642
13.5	Ratings of competence satisfaction for the sunk-cost option	0 14
-	and the alternative option for those selecting each option	644
	and the alternative option for those selecting each option	644

13.6	Risk aversion for gains and risk seeking for losses on a	
	money-based task by financial professionals and students	645
13.7	Percentages of participants adhering to cumulative prospect	
	theory, the minimax rule, or unclassified with affect-poor and	
	affect-rich problems (a) with or (b) without numerical	
	information concerning willingness to pay for	
	medication	650
13.8	Proportion of politicians and population samples in Belgium,	
	Canada and Israel voting to extend a loan programme	654
13.9	A model of selective exposure: defence motivation and	
	accuracy motivation	659
13.10	The five phases of decision-making according to Galotti's	
10110	theory	660
13 11	Klein's recognition-primed decision model	661
14 1	Mean number of <i>modus ponens</i> inferences accepted as a	001
1 1.1	function of relative strength of the evidence and strategy	676
14.2	The Wason selection task	676
14.2	Percentage acceptance of conclusions as a function of	070
14.5	perceived base rate (low vs high) believability of conclusions	
	and validity of conclusions	679
144	Three models of the relationship between the intuitive and	01)
17.7	deliberate systems: (a) serial model: (b) parallel model:	
	and (c) logical intuition model	685
14.5	Proportion correct on incongruent syllogisms as a function of	005
14.5	instructions and cognitive ability	687
14.6	The approximate time courses of reasoning and meta	007
14.0	reasoning processes during reasoning and problem solving	680
147	Brain regions most consistently activated across 28 studies of	00)
14.7	deductive reasoning	600
1/1 8	P elationships between reasoning task performance (accuracy)	070
14.0	and inferior frontal cortex activity in the left hemisphere and	
	the right hemisphere in (a) the low load condition and (b) the	
	high load condition	602
14.0	Mean responses to the question "How much risk do you	092
14.9	baliava alimata abanga pasas ta human haalth, safatu ar	
	prosperity?"	606
14 10	Efforts of trustworthings and others' aninions on	090
14.10	convincingness ratings	700
1/11	Maan rated argument strength as a function of the probability	/00
14.11	of the outcome and how negative the outcome would be	701
14 12	Stangyigh's tripartite model of reasoning	701
14.12	The two dimensional framework for emotion showing the two	/00
13.1	dimensions of placeure misery and arousel clean and the two	
	dimensions of presiding effect and presiding effect	716
15.2	Drain array activated by positive granting and govern 1 -time 1	/10
13.2	Drain areas activated by positive, negative and neutral stimuli	/1/
13.3	brain areas showing greater activity for top-down than for	
	bottom-up processing and those snowing greater activity for	710
15 4	Multiple approved market and an and a second s	/18
15.4	Numple appraisal mechanisms used in emotion generation	720

15.5	Changes in self-reported horror and distress and in galvanic skin response between pre-training and post-training (for the	501
15.6	A process model of emotion regulation based on five major types of strategy (situation selection, situation modification, attention deployment, cognitive change and response	721
	modulation)	725
15.7	Mean level of depression as a function of stress severity and	727
15 0	cognitive reappraisal ability	121
15.0	The incompatibility flanker effect (incompatible trials	120
15.7	compatible trials) on reaction times as a function of mood	
	(happy or sad) and whether a global, local or mixed focus	
	had been primed on a previous task	733
15.10	Two main brain mechanisms involved in the memory-	
	enhancing effects of emotion: (1) the medial temporal	
	lobes; (2) the medial, dorsolateral and ventrolateral	
15 11	prefrontal cortex	735
15.11	(a) Free and (b) cued recall as a function of mood state	777
15 12	(nappy or sad) at learning and at recall Two well known morel dilemme problems: (a) the trollow	/3/
13.12	problem: and (b) the footbridge problem	738
15.13	The dorsolateral prefrontal cortex, located approximately in	750
10110	Brodmann areas 9 and 46 and the ventromedial prefrontal	
	cortex located approximately in Brodmann areas 10 and 11	739
15.14	Sensitivity to consequences, sensitivity to moral norms and	
	preference for inaction vs action as a function of psychopathy	
	(low vs high)	741
15.15	Driverless cars: moral decisions	742
15.16	Effects of mood manipulation (anxiety, sadness or neutral)	745
15 17	On percentages of people choosing a high-risk job option	/45
13.17	(neutral vs sad) and self-focus (low vs high)	746
15 18	The positive emotion "family tree" with the trunk representing	740
10.10	the neural reward system and the branches representing nine	
	semi-distinct positive emotions	748
15.19	Probability of selecting a candy bar by participants in a happy	
	or sad mood as a function of implicit attitudes on the Implicit	
	Association Test	750
15.20	Effects of mood states on judgement and decision-making.	750
15.21	The emotion-imbued choice model	752
15.22	The amotional Stream task	/56
15.25	The impaired cognitive control account put forward by	/30
13.24	Joormann et al. (2007)	761
16.1	Mean scores for error detection on a proofreading task	
	comparing unconscious goal vs no-goal control and low vs.	
	high goal importance	770
16.2	Awareness as a social perceptual model of attention	771

16.3	(a) Region in left fronto-polar cortex for which decoding of uncoming motor decisions was possible (b) Decoding	
	accuracy of these decisions	774
16.4	Undistorted and distorted photographs of the Brunnen der Lebensfreude in Rostock. Germany	777
16.5	Modulation of the appropriate frequency bands of the EEG signal associated with motor imagery in one healthy control	
	and three patients	779
16.6	Activation patterns on a binocular-rivalry task when observers (A) reported what they perceived or (B) passively experienced	
	rivalry	781
16.7	Three successive stages of visual processing following stimulus presentation	782
16.8	Percentage of trials on which participants reported	
	awareness of the content of photographs under masked	
	and unmasked conditions for animal and non-animal	792
16.9	Five hypotheses about the relationship between	/03
10.7	attention and conscious awareness identified by Webb	
	and Graziano	785
16.10	Event-related potential waveforms in the aware-correct,	
	unaware-correct and unaware-incorrect conditions	786
16.11	Synchronisation of neural activity across cortical areas for	
	consciously perceived words (visible condition) and non-	
	perceived words (invisible condition) during different time	
1 < 10	periods	787
16.12	Integrated brain activity: (a) overall information sharing or integration across the brain for vegetative state, minimally conscious and conscious brain-damaged patients and healthy controls): (b) information sharing (integration) across short.	
	medium and long distances within the brain for the four	
	groups	788
16.13	Event-related potentials in the left and right hemispheres to the first of two stimuli by AC (a patient with	
	severe corpus callosum damage)	796
16.14	Detection and localisation of circles presented to the left or right visual fields by two patients responding verbally,	
	with the left or right hand	797

Preface

Producing regular editions of this textbook gives us a front-row seat from which to observe all the exciting developments in our understanding of human cognition. What are the main reasons for the rapid rate of progress within cognitive psychology since the seventh edition of this textbook? Below we identify two factors that have been especially important.

First, the overarching assumption that the optimal way to enhance our understanding of cognition is by combining data and insights from several different approaches remains exceptionally fruitful. These approaches include traditional cognitive psychology; cognitive neuropsychology (study of brain-damaged patients); computational cognitive science (development of computational models of human cognition); and cognitive neuroscience (combining information from behaviour and from brain activity). Note that we use the term "cognitive psychology" in a broad or general sense to cover *all* these approaches.

The above approaches all continue to make extremely valuable contributions. However, cognitive neuroscience deserves to be singled out – it has increasingly been used with great success to resolve theoretical controversies and to provide novel empirical data that foster theoretical developments.

Second, there has been a steady increase in cognitive research of direct relevance to real life. This is reflected in a substantial increase in the number of boxes labelled "IN THE REAL WORLD" in this edition compared to the previous one. Examples include eyewitness confidence, mishearing of song lyrics, multi-tasking, airport security checks and causes of plane crashes. What is noteworthy is the increased *quality* of real-world research (e.g., more sophisticated experimental designs; enhanced theoretical relevance).

With every successive edition of this textbook, the authors have had to work harder and harder to keep with huge increase in the number of research publications in cognitive psychology. For example, the first author wrote parts of the book in far-flung places including Botswana, New Zealand, Malaysia and Cambodia. His only regret is that book writing has sometimes had to take precedence over sightseeing!

We would both like to thank the very friendly and efficient staff at Psychology Press including Sadé Lee and Ceri McLardy.

We would also like to thank the anonymous reviewers, that commented on various chapters. Their comments were very useful when we embarked on the task of revising the first draft of the manuscript. Of course, we are responsible for any errors and/or misunderstandings that remain.

Michael Eysenck and Mark Keane

Visual tour (how to use this book)

TEXTBOOK FEATURES

Listed below are the various pedagogical features that can be found both in the margins and within the main text, with visual examples of the boxes to look out for, and descriptions of what you can expect them to contain.

Key terms

Throughout the book, key terms are highlighted in the text and defined in boxes in the margins, helping you to get to grips with the vocabulary fundamental to the subject being covered.

In the real world

Each chapter contains boxes within the main text that explore "real world" examples, providing context and demonstrating how some of the theories and concepts covered in the chapter work in practice.

Chapter summary

Each chapter concludes with a brief summary of each section of the chapter, helping you to consolidate your learning by making sure you have taken in all of the concepts covered.

Further reading

Also at the end of each chapter is an annotated list of key scholarly books, book chapters, and journal articles that it is recommended you explore through independent study to expand upon the knowledge you have gained from the chapter and plan for your assignments.

Much o

IN TH

Much of the left visual field as a ((BA17) to relieve his by Larry Weiskrantz y

Links to companion website features

Whenever you see this symbol, look out for related supplementary material amongst the resources for that chapter on the companion website at www. routledge.com/cw/eysenck.

modation: a
ickening of the
accomminatonsia: a c
thicke
achromatopur percept
colour perception b
affect heuristic: using
or decisions.

Glossary

An extensive glossary appears at the end of the book, offering a comprehensive list that includes all the key terms boxes in the main text.

Chapter

Approaches to human cognition

INTRODUCTION

We are now well into the third millennium and there is ever-increasing interest in unravelling the mysteries of the human brain and mind. This interest is reflected in the substantial upsurge of scientific research within cognitive psychology and cognitive neuroscience. In addition, the cognitive approach has become increasingly influential within clinical psychology. In that area, it is recognised that cognitive processes (especially cognitive biases) play a major role in the development (and successful treatment) of mental disorders (see Chapter 15).

In similar fashion, social psychologists increasingly focus on **social cognition**. This focuses on the <u>role of cognitive processes in influencing</u> individuals' behaviour in social situations. For example, suppose other people respond with laughter when you tell them a joke. This laughter is often ambiguous – they may be laughing with you or at you (Walsh et al., 2015). Your subsequent behaviour is likely to be influenced by your cognitive interpretation of their laughter.

What *is* cognitive psychology? It is concerned with the internal processes involved in making sense of the environment and deciding on appropriate action. These processes include attention, perception, learning, memory, language, problem solving, reasoning and thinking. We can define **cognitive psychology** as aiming to understand human cognition by observing the behaviour of people performing various cognitive tasks. However, the term "cognitive psychology" can also be used more broadly to include brain activity and structure as relevant information for understanding human cognition. It is in this broader sense that it is used in the title of this book.

Here is a simple example of cognitive psychology in action. Frederick (2005) developed a test (the Cognitive Reflection Test) that included the following item:

A bat and a ball cost \$1.10 in total. The bat costs \$1.00 more than the ball. How much does the ball cost? ____ cents

KEY TERMS 🖉

Social cognition

An approach within social psychology in which the emphasis is on the cognitive processing of information about other people and social situations.

Cognitive psychology

An approach that aims to understand human cognition by the study of behaviour; a broader definition also includes the study of brain activity and structure. **KEY TERM Cognitive neuroscience** An approach that aims to understand human cognition by combining information from behaviour and the brain. What do *you* think is the correct answer? Braňas-Garza et al. (2015) found in a review of findings from 41,004 individuals that 68% produced the wrong answer (typically 10 cents) and only 32% gave the right answer (5 cents). Even providing financial incentives to produce the correct answer failed to improve performance.

The above findings suggest most people will rapidly produce an incorrect answer (i.e., 10 cents) that is easily accessible and are unwilling to devote extra time to checking that they have the right answer. However, Gangemi et al. (2015) found many individuals producing the wrong answer had a feeling of error suggesting they experienced cognitive uneasiness about their answer. In sum, the intriguing findings on the Cognitive Reflection Test indicate that we can fail to think effectively even on relatively simple problems. Subsequent research has clarified the reasons for these deficiencies in our thinking (see Chapter 12).

The aims of cognitive neuroscientists overlap with those of cognitive psychologists. However, there is one major difference between cognitive neuroscience and cognitive psychology in the narrow sense. Cognitive neuroscientists argue convincingly we need to study the *brain* as well as behaviour while people engage in cognitive tasks. After all, the internal processes involved in human cognition occur in the brain. **Cognitive neuroscience** uses information about behaviour and the brain to understand human cognition. Thus, the distinction between cognitive neuroscience and cognitive psychology in the broader sense is blurred.

Cognitive neuroscientists explore human cognition in several ways. First, there are brain-imaging techniques of which functional magnetic resonance imaging (fMRI) is probably the best-known. Second, there are electrophysiological techniques involving the recording of electrical signals generated by the brain. Third, many cognitive neuroscientists study the effects of brain damage on cognition. It is assumed the patterns of cognitive impairment shown by brain-damaged patients can inform us about normal cognitive functioning and the brain areas responsible for various cognitive processes.

The huge increase in scientific interest in the workings of the brain is mirrored in the popular media – numerous books, films and television programmes communicate the more accessible and dramatic aspects of cognitive neuroscience. Increasingly, media coverage includes coloured pictures of the brain indicating the areas most activated when people perform various tasks.

Four main approaches

We can identify four main approaches to human cognition (see Table 1.1). Note, however, there has been a substantial increase in research combining two (or even more) of these approaches. We will shortly discuss each approach in turn and you will probably find it useful to refer back to this chapter when reading the rest of the book. Hopefully, you will find Table 1.3 (towards the end of this chapter) especially useful because it summarises the strengths and limitation of all four approaches.

TABLE 1.1 APPROACHES TO HUMAN COGNITION

- Cognitive psychology: this approach involves using behavioural evidence to enhance our understanding of human cognition. Since behavioural data are also of great importance within cognitive neuroscience and cognitive neuropsychology, cognitive psychology's influence is enormous.
- Cognitive neuropsychology: this approach involves studying brain-damaged patients to understand normal human cognition. It was originally closely linked to cognitive psychology but has recently also become linked to cognitive neuroscience.
- 3. *Cognitive neuroscience*: this approach involves using evidence from behaviour and the brain to understand human cognition.
- 4. Computational cognitive science: this approach involves developing computational models to further our understanding of human cognition; such models increasingly incorporate knowledge of behaviour and the brain. A computational model takes the form of an algorithm, which consists of a precise and detailed specification of the steps involved in performing a task. Computational models are designed to simulate or imitate human processing on a given task.

COGNITIVE PSYCHOLOGY

We can obtain some perspective on the contribution of cognitive psychology by considering what preceded it. Behaviourism was the dominant approach to psychology throughout the first half of the twentieth century. The American psychologist John Watson (1878–1958) is often regarded as the founder of behaviourism. He argued that psychologists should focus on stimuli (aspects of the immediate situation) and responses (behaviour produced by the participants in an experiment). This approach appears "scientific" because it focuses on stimuli and responses, both of which are observable.

Behaviourists argued that internal mental processes (e.g., attention) cannot be verified by reference to observable behaviour and so should be ignored. According to Watson (1913, p. 165), behaviourism should "never use the terms consciousness, mental states, mind, content, introspectively verifiable and the like". In stark contrast, as we have already seen, cognitive psychologists argue it is of crucial importance to study such internal mental processes. Hopefully, you will be convinced that cognitive psychologists are correct when you read how the concepts of attention (Chapter 5) and consciousness (Chapter 16) have been used fruitfully to enhance our understanding of human cognition.

It is often claimed that behaviourism was overthrown by the "cognitive revolution". However, the reality was less dramatic (Hobbs & Burman, 2009). For example, Tolman (1948) was a behaviourist but he did not believe internal processes should be ignored. He carried out studies in which rats learned to run through a maze to a goal box containing food. When Tolman blocked off the path the rats had learned to use, they rapidly learned to follow other paths leading in the right general direction. Tolman concluded the rats had acquired an internal *cognitive map* indicating the maze's approximate layout.

It is almost as pointless to ask "When did cognitive psychology start?", as to enquire "How long is a piece of string?". However, 1956 was crucially

KEY TERM 🔎

Algorithm A computational procedure providing a specified set of steps to problem solution; see heuristic.

KEY TERMS 🛹

Bottom-up processing Processing directly influenced by environmental stimuli; see top-down processing.

Serial processing

Processing in which one process is completed before the next one starts; see **parallel processing**.

Top-down processing

Stimulus processing that is influenced by factors such as the individual's past experience and expectations. important. At a meeting at the Massachusetts Institute of Technology, Noam Chomsky presented his theory of language, George Miller discussed the magic number seven in short-term memory (Miller, 1956) and Alan Newell and Herbert Simon discussed the General Problem Solver (see Gobet and Lane, 2015). In addition, there was the first systematic attempt to study concept formation from the cognitive perspective (Bruner et al., 1956). The history of cognitive psychology from the perspective of its classic studies is discussed in Eysenck and Groome (2015a).

Several decades ago, most cognitive psychologists subscribed to the information-processing approach based loosely on an analogy between the mind and the computer (see Figure 1.1). A stimulus (e.g., a problem or task) is presented, which causes various internal processes to occur, leading eventually to the desired response or answer. Processing directly affected by the stimulus input is often described as **bottom-up processing**. It was typically assumed only one process occurs at a time: this is **serial processing**, meaning the current process is completed before the onset of the next one.

Figure 1.1

An early version of the information processing approach.

Figure 1.2 Diagram to demonstrate top-down processing.

The above approach is drastically oversimplified. Task processing typically also involves **top-down processing**, which is processing influenced by the individual's expectations and knowledge rather than simply by the stimulus itself. Read what it says in the triangle (Figure 1.2). Unless you know the trick, you probably read it as "Paris in the spring". If so, look again: the word "the" is repeated. Your expectation it was a wellknown phrase (i.e., top-down processing) dominated the information available from the stimulus (i.e., bottom-up processing).

The traditional approach was also oversimplified in assuming processing is typically serial. In fact, more than one process typically occurs at the same time – this is **parallel processing**. We are much more likely to use parallel processing when performing a highly practised task than a new one (see Chapter 5). For example, someone taking their first driving lesson finds it very hard to control the car's speed, steer accurately and pay attention to other road users at the same time. In contrast, an experienced driver finds it easy.

There is also **cascade processing**: a form of parallel processing involving an *overlap* of different processing stages when someone performs a task. More specifically, later stages of processing are initiated before one or more earlier stages have finished. For example, suppose you are trying to work out the meaning of a visually presented word.

The most thorough approach would involve identifying all the letters in the word followed by matching the resultant letter string against words you have stored in long-term memory. In fact, people often engage in cascade processing – they form hypotheses as to the word that has been presented *before* identifying all the letters (McClelland, 1979).

An important issue for cognitive psychologists is the task-impurity problem – most cognitive tasks require several processes thus making it hard to interpret the findings. One approach to this problem is to consider various tasks all requiring the same process. For example, Miyake et al. (2000) used three tasks requiring deliberate inhibition of a dominant response:

- (1) The Stroop task: name the colour in which colour words are presented (e.g., RED printed in green) and avoid saying the colour word (which has to be inhibited). You can see for yourself how hard this task is by naming the colours of the words shown in Figure 1.3.
- (2) The anti-cascade task: inhibit the natural tendency to look at a visual cue and instead look in the opposite direction. People typically take longer to perform this task than the control task of simply looking at the visual cue.
- (3) The stop-signal task: respond rapidly to indicate whether each of a series of words is an animal or non-animal; on key trials, there was a computer-emitted tone indicating that the response should be inhibited.

Miyake et al. (2000) found all three tasks involved similar processes. They used complex statistical techniques (latent variable analysis) to extract what

Column 1	Column 2	Column 3	Column 4	Column 5
	NEST	BLACK	YELLOW	YELLOW
	CHAOS	YELLOW	RED	RED
	OVEN	RED	BLUE	RED
	TENNIS	GREEN	BLACK	BLACK
	RING	BLUE	GREEN	GREEN
	OVEN	RED	BLUE	BLUE
	RING	BLUE	GREEN	GREEN
	CHAOS	YELLOW	RED	RED
	NEST	BLACK	YELLOW	BLACK
	RING	BLUE	GREEN	GREEN
	TENNIS	GREEN	BLACK	BLACK
	CHAOS	YELLOW	RED	RED
	RING	BLUE	GREEN	GREEN
	CHAOS	YELLOW	RED	YELLOW
	OVEN	RED	BLUE	BLUE
	TENNIS	GREEN	BLACK	BLACK
	NEST	BLACK	YELLOW	YELLOW
	OVEN	RED	BLUE	RED
	TENNIS	GREEN	BLACK	BLACK
	CHAOS	BLUE	GREEN	GREEN

Figure 1.3

Test yourself by naming the colours in each column. You should name the colours rapidly in the first three columns because there is no colour-word conflict. In contrast, colour naming should be slower (and more prone to error) when naming colours in the fourth and fifth columns.

KEY TERMS 🛹

Parallel processing Processing in which two or more cognitive processes occur at the same time.

Cascade processing

Later processing stages start before earlier processing stages have been completed when performing a task.

KEY TERMS 🛹

Ecological validity The applicability (or otherwise) of the findings of laboratory studies to everyday settings.

Implacable experimenter

The situation in experimental research in which the experimenter's behaviour is uninfluenced by the participant's behaviour. was common across the three tasks. This was assumed to represent a relatively pure measure of the inhibitory process. Throughout this book, we will discuss many ingenious strategies used by cognitive psychologists to identify the processes used in numerous tasks.

Strengths

Cognitive psychology was for many years the engine room of progress in understanding human cognition and the other three approaches listed in Table 1.1 have benefitted from it. For example, cognitive neuropsychology became important 25 years after cognitive psychology. It was only when cognitive psychologists had developed reasonable accounts of healthy human cognition that the performance of brain-damaged patients could be understood fully. Before that, it was hard to decide which patterns of cognitive impairment were theoretically important.

In a similar fashion, the computational modelling activities of computational cognitive scientists are typically heavily influenced by precomputational psychological theories. Finally, the great majority of theories driving research in cognitive neuroscience originated within cognitive psychology.

Cognitive psychology has not only had a massive influence on theorising across all four major approaches to human cognition. It has also had a predominant influence on the development of cognitive tasks and on task analysis (how a task is accomplished).

Limitations

In spite of cognitive psychology's enormous contributions, it has several limitations. First, our behaviour in the laboratory may differ from our behaviour in everyday life. Thus, laboratory research sometimes lacks **ecological validity** – the extent to which laboratory findings are applicable to everyday life. For example, our everyday behaviour is often designed to change a situation or to influence others' behaviour. In contrast, the sequence of events in most laboratory research is based on the experimenter's predetermined plan and is uninfluenced by participants' behaviour. Wachtel (1973) used the term **implacable experimenter** to describe this state of affairs.

We must not exaggerate problems associated with lack of ecological validity. As we will see in this book, there has been a dramatic increase in applied cognitive psychology in which the emphasis is on investigating topics of general importance. Such research often has good ecological validity. Note that it is far better to carry out well-controlled experiments under laboratory conditions than poorly controlled experiments under naturalistic conditions. It is precisely because it is considerably easier for researchers to exercise experimental control in the laboratory that so much research is laboratory-based.

Second, theories in cognitive psychology are often expressed only in verbal terms (although this is becoming less common). Such theories are vague, making it hard to know precisely what predictions follow from them and thus to falsify them. These limitations can largely be overcome by computational cognitive scientists developing cognitive models specifying precisely any given theory's assumptions.

Third, difficulties in falsifying theories have led to a proliferation of different theories on any given topic. For example, there are at least 12 different theories of working memory (see Chapter 6). Another reason for the proliferation of rather similar theories is the "toothbrush problem" (Mischel, 2008): no self-respecting cognitive psychologist wants to use anyone else's theory.

Fourth, the findings obtained using any given task or paradigm are sometimes *specific* to that paradigm and do not generalise to other (apparently similar) tasks. This is **paradigm specificity**. It means some findings are narrow in scope and applicability (Meiser, 2011). This problem can be minimised by developing theories accounting for performance across several tasks or paradigms. For example, Anderson et al. (2004; discussed later in this chapter) developed a comprehensive theoretical architecture or framework known as the Adaptive Control of Thought-Rational (ACT-R) model.

Fifth, cognitive psychologists typically obtain measures of performance speed and accuracy. These measures are very useful but provide only *indirect* evidence about internal cognitive processes. Most tasks are "impure" in that they involve several processes, and it is hard to identify the number and nature of processes involved on the basis of speed and accuracy measures.

COGNITIVE NEUROPSYCHOLOGY

Cognitive neuropsychology focuses on the patterns of cognitive performance (intact and impaired) of brain-damaged patients having a **lesion** (structural damage to the brain caused by injury or disease). According to cognitive neuropsychologists, studying brain-damaged patients can tell us much about cognition in healthy individuals.

The above idea does not sound very promising, does it? In fact, however, cognitive neuropsychology has contributed substantially to our understanding of healthy human cognition. For example, in the 1960s, most memory researchers thought the storage of information in long-term memory depended on previous processing in short-term memory (see Chapter 6). However, Shallice and Warrington (1970) reported the case of a brain-damaged man, KF. His short-term memory was severely impaired but his long-term memory was intact. These findings played an important role in changing theories of healthy human memory.

Since cognitive neuropsychologists study brain-damaged patients, we might imagine they would be interested in the workings of the brain. In fact, many cognitive neuropsychologists pay little attention to the brain itself. According to Coltheart (2015, p. 198), for example, "Even though cognitive neuropsychologists typically study people with brain damage, . . . cognitive neuropsychology is not about the brain: it is about information-processing models of cognition."

An increasing number of cognitive neuropsychologists disagree with Coltheart. They believe we should consider the brain, using techniques such as magnetic resonance imaging to identify the brain areas damaged in any given patient. They are also increasingly willing to study the impact of brain damage on brain processes using various neuroimaging techniques.

KEY TERMS 🛹

Paradigm specificity The findings with a given experimental task or paradigm are not replicated even when apparently very similar tasks or paradigms are used.

lesion

Damage within the brain resulting from injury or disease; it typically affects a restricted area.

Max Coltheart. Courtesy of Max Coltheart.

KEY TERM 🔎

Modularity The assumption that the cognitive system consists of many fairly independent or separate modules or processors, each specialised for a given type of processing.

Theoretical assumptions

Coltheart (2001) provided a very clear account of the major assumptions of cognitive neuropsychology. Here we will discuss these assumptions and briefly consider relevant evidence.

One key assumption is **modularity**, meaning the cognitive system consists of numerous modules or processors operating fairly independently or separately of each other. It is assumed these modules exhibit domain specificity (they respond to only one given class of stimuli). For example, there may be a face-recognition module that responds only when a face is presented.

Modular systems typically involve serial processing with processing within one module being completed before processing starts in the next module. As a result, there is very limited *interaction* among modules. There is some support for modularity from the evolutionary approach. Species with larger brains generally have more specialised brain regions that could be involved in modular processing. However, the notion that human cognition is heavily modular is hard to reconcile with neuroimaging evidence. The human brain possesses a moderately high level of connectivity (Bullmore &

Sporns, 2012; see p. 14), suggesting there is more parallel processing than assumed by most cognitive neuropsychologists.

The second major assumption is that of *anatomical modularity*. According to this assumption, each module is located in a specific brain area. Why is this assumption important? Cognitive neuropsychologists are most likely to make progress when studying brain patients with brain damage limited to a *single* module. Such patients may not exist if there is no anatomical modularity. Suppose all modules were distributed across large brain areas. If so, the great majority of brain-damaged patients would suffer damage to most modules, making it impossible to work out the number and nature of their modules.

There is evidence of anatomical modularity in the visual processing system (see Chapter 2). However, there is less support for anatomical modularity with most complex tasks. For example, consider the findings of Yarkoni et al. (2011). Across over 3,000 neuroimaging studies, some brain areas (e.g., dorsolateral prefrontal cortex; anterior cingulate cortex) were activated in 20% of them despite the great diversity of tasks involved.

The third major assumption (the "universality assumption") is that "Individuals . . . share a similar or an equivalent organisation of their cognitive functions, and presumably have the same underlying brain anatomy" (de Schotten and Shallice, 2017, p. 172). If this assumption (also common within cognitive neuroscience) is false, we could not readily use the findings from individual patients to draw conclusions about the organisation of other people's cognitive systems or functional architecture.

There is accumulating evidence against the universality assumption. Tzourio-Mazoyer et al. (2004) discovered substantial differences between individuals in the location of brain networks involved in speech and language. Finn et al. (2015) found clear-cut differences between individuals in functional connectivity across the brain, concluding that "An individual's functional brain connectivity profile is both unique and reliable, similarly to a fingerprint" (p. 1669).

Duffau (2017) reviewed interesting research conducted on patients during surgery for epilepsy or a tumour. Direct electrical stimulation, which causes "a genuine virtual transient lesion" (p. 305) is applied invasively to the cortex. The patient is awakened and given various cognitive tasks while receiving stimulation. Impaired performance when direct electrical stimulation is applied to a given area indicates that area is involved in the cognitive functions assessed by the current task.

Findings obtained using direct electrical stimulation and other techniques (e.g., fMRI) led Duffau (2017) to propose a two-level model. At the *cortical* level, there is high variability across individuals in structure and function of any given brain areas. At the *subcortical* level (e.g., in premotor cortex), in contrast, there is very little variability across individuals. The findings at the cortical level seem inconsistent with the universality assumption.

The fourth assumption is *subtractivity*. The basic idea is that brain damage impairs one or more processing modules but does not change or add anything. The fifth assumption (related to subtractivity) is *transparency* (Shallice, 2015). According to the transparency assumption, the performance of a brain-damaged patient reflects the operation of a theory designed to explain the performance of healthy individuals minus the impact of their lesion.

Why are the subtractivity and transparency assumptions important? Suppose they are incorrect and brain-damaged patients develop new modules to compensate for their cognitive impairments. That would greatly complicate the task of learning about the intact cognitive system by studying brain-damaged patients. Consider **pure alexia**, a condition in which brain-damaged patients have severe reading problems but otherwise intact language abilities. These patients generally have a direct relationship between word length and reading speed due to letter-by-letter processing (Bormann et al., 2015). This indicates the use of a compensatory strategy differing markedly from the reading processes used by healthy adults.

Research in cognitive neuropsychology

How do cognitive neuropsychologists set about understanding the cognitive system? Of major importance is the search for dissociations, which occur when a patient has normal performance on one task (task X) but is impaired on a second one (task Y). For example, amnesic patients perform almost normally on short-term memory tasks but are greatly impaired on many

KEY TERM 🛹

Pure alexia Severe problems with reading but not other language skills; caused by damage to brain areas involved in visual processing.